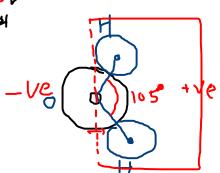
Electrostatics

<u>**Dipole:**</u> An electric dipole consists of a pair of equal and opposite point charges separated by a very small distance.

Example: H_20



\checkmark Dipole Moment (\vec{p})

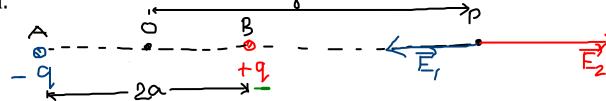
$$\vec{p} = \mathbf{q} \times \mathbf{\overline{2}a}$$

$$\checkmark$$
0r, $|\vec{p}| = q \times |\vec{2}a|$

The direction of \vec{p} is from negative (-) to positive (+).

Electric field intensity at a point on axial line of electric dipole

Let us consider a dipole consisting of two point charges -q and +q separated by a small distance 2a.



We have to find out electric field at point P having distance r from O, on axial line of dipole.

If $\overrightarrow{E_1}$ is the electric intensity at P due to charge -q at A then,

$$\left| \overrightarrow{E_1} \right| = \frac{1}{4\pi\epsilon_0} \frac{q}{AP^2} = \frac{1}{4\pi\epsilon_0} \frac{q}{(r+a)^2}$$
 along PA

and, if $\overrightarrow{E_2}$ at P due to charge +q at B then,

$$\left| \overrightarrow{E_2} \right| = \frac{1}{4\pi\epsilon_0} \frac{q}{BP^2} = \frac{1}{4\pi\epsilon_0} \frac{q}{(r-a)^2}$$
 along BP

as E_1 and E_2 are collinear vectors acting in opposite direction and $|\overrightarrow{E_2}| > |\overrightarrow{E_1}|$

therefore, the resultant intensity E at P will be difference of two, acting along BP.

$$\begin{aligned} |\vec{E}| &= |\vec{E_2}| - |\vec{E_1}| \\ &= \frac{q}{4\pi\epsilon_0} \left[\frac{1}{(r-a)^2} - \frac{1}{(r+a)^2} \right] \qquad = \frac{q}{4\pi\epsilon_0} \left[\frac{(r+a)^2 - (r-a)^2}{(r^2 - a^2)^2} \right] \\ &= \frac{q}{4\pi\epsilon_0} \left[\frac{4ar}{(r^2 - a^2)^2} \right] \\ |\vec{E}| &= \frac{q \times 2a \times 2 \times r}{4\pi\epsilon_0 (r^2 - a^2)^2} \\ |\vec{E}| &= \frac{|\vec{p}| \times 2r}{4\pi\epsilon_0 (r^2 - a^2)^2} \end{aligned} \qquad (\because q \times 2a = |\vec{p}|)$$

For short dipole i.e. 2a << r

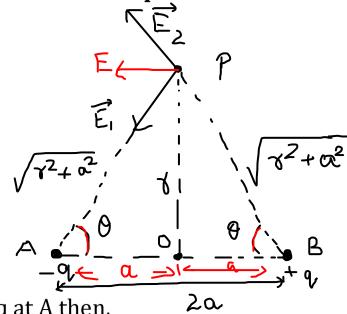
Then, a² will be negligible

so,
$$|\vec{E}| = \frac{|\vec{p}| \times 2r}{4\pi\epsilon_0 r^4}$$

$$|\vec{E}| = \frac{2|\vec{p}|}{4\pi\epsilon_0 r^3}$$
In Vectors,
$$\vec{E}_{axial} = \frac{2\vec{p}}{4\pi\epsilon_0 r^3}$$

Electric field intensity at a point on equatorial line of electric dipole

Let us consider a dipole consisting of two point charges -q and +q separated by a small distance 2a. We have to find out electric field at point P having distance r from O, on equatorial line of dipole

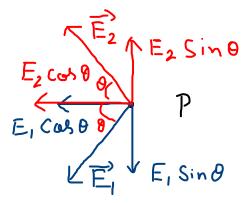


If $\overrightarrow{E_1}$ is the electric intensity at P due to charge -q at A then,

$$\left| \overrightarrow{E_1} \right| = \frac{1}{4\pi\epsilon_0} \frac{q}{AP^2} = \frac{1}{4\pi\epsilon_0} \frac{q}{\left(\sqrt{r+a}\right)^2}$$
 along PA

and, if $\overrightarrow{E_2}$ at P due to charge +q at B then,

$$\left| \overrightarrow{E_2} \right| = \frac{1}{4\pi\epsilon_0} \frac{q}{BP^2} = \frac{1}{4\pi\epsilon_0} \frac{q}{\left(\sqrt{r+a}\right)^2}$$
 along BP



Magnitude of $\overrightarrow{E_1}$ and $\overrightarrow{E_2}$ are equal.

But,

but $E_1 sin\theta$ and $E_2 sin\theta$ are in opposite direction, so they will cancel each other.

For short dipole, 2a << r, a^2 may be neglected

$$|\vec{E}| = \frac{|\vec{p}|}{4\pi\epsilon_0 (r^2)^{3/2}}$$
 Or,
$$|\vec{E}| = \frac{|\vec{p}|}{4\pi\epsilon_0 r^3}$$
 In vectors,
$$\vec{E}_{\text{equitorial}} = \frac{-\vec{p}}{4\pi\epsilon_0 r^3}$$

Negative sign shows that \vec{E} is antiparallel with \vec{p} .

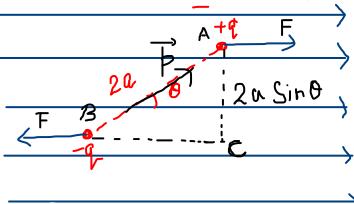
Note: For short dipole the intensity of the electric field on an axial point is double in magnitude by opposite in direction.

$$\vec{E}_{axial} = -2\vec{E}_{equitorial}$$

Torque on a dipole in a uniform electric field

Let us consider an electric dipole is placed in a uniform external electric field \vec{r} at any angle \vec{Q} with the dimerior of \vec{r}

 \vec{E} at any angle θ with the direction of \vec{E} .



$$\frac{\beta}{h} = sim \theta$$

$$E = \frac{F}{G_0}$$

Force on charge -q at $\mathfrak{Z}=q\vec{E}$, along the direction opposite to \vec{E}

Force on charge +q at $A=q\vec{E}$, along the direction \vec{E}

These forces produce a couple which rotates the dipole in clockwise direction, $torque|\vec{\tau}|=moment\ of\ the\ couple$

= Force X arm of couple

= F X AC (perpendicular distance between the forces)

 $= q |\vec{E}| X AB \sin \theta$

$$= q |\vec{E}| \times 2a \sin \theta$$

$$= (q \times 2a) |\vec{E}| \sin \theta$$

$$|\vec{\tau}| = |\vec{p}| |\vec{E}| \sin \theta$$

In Vectors, $\vec{\tau} = \vec{p} \times \vec{E}$

direction of $\overrightarrow{\tau}$ is perpendicular to \overrightarrow{p} and \overrightarrow{E} Special Cases

i) When
$$\underline{\mathbf{\theta}} = \underline{\mathbf{0}}$$
, and $|\vec{\tau}| = |\vec{p}| |\vec{E}| \sin \theta$
 $\sin 0^o = 0$
 $\therefore \tau = 0$

i.e. when dipole is in the direction of field it is **stable equilibrium**.

- for $\theta = 180^{\circ}$ i.e. dipole is in opposite direction of \vec{E} But, the torque τ would turn the dipole through 180° , and it will be in unstable equilibrium.
 - When, $\mathbf{\theta} = \mathbf{90}^o$, $\sin 90^o = 1$ ii) $\tau = p E \quad (Maximum).$

DBK eClass Physics 12

Mr. Hemant Kumar